Recenzja rozprawy doktorskiej Pana mgr. Adama Hermaniuka, Instytut Biologii Uniwersytetu w Białymstoku, zatytułowanej „The impact of cell size on metabolic rate, growth rate and development in amphibians: A case study on the diploid and triploid edible frogs (Pelophylax esculentus)”.

A) Ogólna struktura

Przedstawiona mi do recenzji rozprawa jest napisana w języku angielskim i łącznie liczy 65 stron. Jej główną część stanowią trzy rozdziały, każdy w formie opublikowanej pracy naukowej (dwie publikacje z Physiological and Biochemical Zoology, jedna z Herpetologica). Rozdziały wzbogacone są wspólnym wstępu i dyskusją. Rozprawa zawiera także streszczenie w języku polskim i angielskim oraz spis publikacji do których odwołuje się wstęp i dyskusja. Pan Hermaniuk jest pierwszym autorem każdej z przedstawionych publikacji, a oświadczenia współautorów (załącznik na końcu rozprawy) potwierdzają istotną rolę doktoranta w powstaniu każdej publikacji.

B) Główne dokonania


Pana Hermaniuka nie zraziły zarówno trudności metodologiczne pomiaru komórek jak i wyniki Ellenbay. Badając żaby wodne, będące genetycznymi hybrydami żaby jeziorkowej i żaby śmieciwą, doktorant wykazał, że w porównaniu z formami triploidalnymi, formy diploidalne żab charakteryzowały się mniejszymi komórkami w trzech tkankach i jednocześnie wyższym tempem metabolizmu spożywkowego, w przeliczeniu na jednostkę masy. Ważnym odkryciem doktoranta jest wykażanie, że związek między ploidalnością a rozmiarem komórek, a metabolizmem istnieje wśród wczesnych stadiów rozwojowych (wodne kijanki), ale nie w późniejszych stadiach które żyją na lądzie. Inspirując się tym odkryciem, trzecia publikacja doktoranta dokonuje syntezy danych publikowanych na temat związku między ploidalnością a tempem metabolizmu. Z syntezy tej
wyłania się ciekawego obrazu: taki związek udaje się wykryć częściej u organizmów wodnych niż u lądowych. Propozycja wytłumaczenia takiego zjawiska jest spójna z najnowszymi informacjami na temat powiązań między rozmiarem komórek, a efektywnością dostarczania tlenu do mitochondriów: środowisko wodne charakteryzuje zmniejszoną dostępność tlenu, a zatem to właśnie w tym środowisku należy się spodziewać wyraźniejszego wpływu rozmiarów komórek na tempo metabolismu (małe komórki ułatwiałyby korzystanie z tlenu w hipoksji). Mechanizm ten może na przykład wytłumaczyć dlaczego Ellenbay badając muszki owocowe nie wykrył różnicy w metabolizmie między diploidami i triploidami.

Za bardzo cenne w badaniach doktoranta uważam także powiązanie problemu ploidalności, wielkości komórek i metabolizmu, ze zjawiskiem wpływu temperatury na cechy historii życia i rozmiar komórek. Badania doktoranta potwierdzają wiele hipotez, które nie doczekały się testowania z powodu braku odpowiednich danych. Na przykład, badając aż trzy tkanki naraz doktorant uzyskał dane, które wspierają przewidywania, że mechanizmy rozwojowe koordynują zmiany wielkości komórek w różnych tkankach. Kijanki rozwijające się w cieplejszych warunkach osiągały mniejsze rozmiary ciała i mniejsze komórki na tym samym etapie rozwoju co kijanki w zimniejszych warunkach. Ten wyniki wspiera hipotezę o powiązaniu między wraźliwością termiczną wielkości komórek, a plastycznością fenotypową rozmiarów ciała. Powszechny wśród organizmów zmiennością negatywny związek między temperaturą a rozmiarami dorosłymi (tzw. temperature-size rule) pozostaje jedną z większych zagadek biologicznych.

Podsumowując główne dokonania doktoranta, pragnę podkreślić bardzo ciekawy i szeroki kontekst ewolucyjno-fizjologiczny badań Pana Hermaniuka, a także poprawnność metodologiczną przeprowadzonych badań. Zresztą nie jest to tylko moja opinia – trzy publikacje doktoranta w bardzo dobrzych czasopismach międzynarodowych musiały być równie wysoko ocenione przez recenzentów tych prac.

C) Uwagi i pytania

1) W ogólnym wstępie do rozprawy brakowało mi przedstawienia mechanizmu hybrydogenesy u badanych organizmów oraz zarysowania ewolucyjnego kontekstu tego zjawiska. Jestem ciekaw jak doktorant widzi wyniki swoich badań na tle tego szerszego kontekstu. Zjawisko hybrydogenesy u żab wodnych związane jest z problemem konfliktów genowych, zapadką Mullera, czy ewolucją seksu. Doktorant często zastanawiał się nad korzyściami z większych lub mniejszych komórek, ale czy w obliczu hybrydogenesy o takich korzyściach można w równym stopniu mówić w odniesieniu do obu rodzajów genomów tworzących hybrydę?

2) We wstępie brakowało mi obszerniejszych informacji na temat rozmieszczenia geograficznego dwóch bohaterów badań, a więc genomu R oraz genomu L. Jak doktorant wykorzystałby wyniki swoich badań do zrozumienia mechanizmów różnicujących to rozmieszczenie? Ciekawych poszła dostarczają na przykład wcześniejsze badania na temat różnej wrażliwości kijanek żaby wodnej, jeziorkowej i żaby śmieszkii na warunki tlenowe w wodzie. Jestem także ciekaw czy z pomiarów warunków tlenowych i termicznych prowadzonych w terenie przez doktoranta wyłaniają się jakieś ciekawe zależności w powiązaniu z badanymi żabami.

3) W zastosowanym przez doktoranta schemacie eksperymentalnym, efekty losowe zbiornika hodowlanego i efekty ustalone temperatury są nie do rozróżnienia albo w do wyhodowania kijanek w dwóch różnych temperaturach, doktorant użył po jednym zbiorniku na temperaturę. Z
punktu widzenia statystycznego, korzystniejszym rozwiązaniem byłoby użycie większej liczby zbiorników, dzięki czemu możliwe stałoby się uniezależnienie od siebie obu efektów.

4) Po wyhodowaniu kijanek w 19 i 24 ºC, przeobrażone żaby zostały umieszczone we wspólnej temperaturze 23 ºC, z dodatkowym źródłem ciepła do wygrzewania. Po trzech miesiącach hodowli w tych warunkach, żaby zostały zbadane pod względem rozmiarów komórki i tempa metabolizmu. Analiza ta nie wykazała efektów temperatury rozwoju kijanek na rozmiar komórki czy metabolizm żab po metamorfozie. Jedną z hipotez tłumaczących zanik efektu warunków termicznych w czasie rozwoju może być upodobnienie się rozmiaru komórki ze względu na jednakowe warunki termiczne po przeobrażeniu. Żaby zapewne wciąż rosły przez trzy miesiące po przeobrażeniu, co stwarzało dogodne warunki rozwojowe do zmiany wielkości komórki, w szczególności w takim organie jak wątroba.

5) Doktorant dysponuje danymi o erytrocytach u kijanek i żab dorosłych, dzięki którym można porównać czy zmiana wielkości erytrocytów między stadium kijanki a stadium dorosłym przebiegała w podobny sposób w zależności od stopnia ploidalności, a także temperatury rozwoju kijanek. Ciekawe, czy ewentualne różnice w stopniu zmiany wielkości erytrocytów można wiązać z tym, że jedne żaby doświadczyły w czasie rozwoju wzrostu temperatury z 19 na 23ºC a inne spadku temperatury z 24 na 23 ºC?

Podsumowanie

Przedstawione mi do oceny badania Pana Adama Hermaniuka dotyczą ważnego ale trudnego do badania i przez to bardzo słabo poznanego zjawiska biologicznego. Doktorant świetnie poradził sobie z tym wyzwaniem, prowadząc badania z dbałością o szczegóły. Co więcej, koncentrując się na jednym głównym pytaniu, które jest przedmiotem rozprawy, doktorant nie zawziął swojej perspektywy i przeprowadził szeroką dyskusję swoich wyników na tle wyników innych autorów, co zaowocowało zaproponowaniem hipotezy, która jest w stanie wytłumaczyć zróżnicowanie wśród publikowanych wyników jako objaw jednego zjawiska. Badania Pana Hermaniuka uważam za wartościowy wkład w dziedzinę ekologii ewolucyjnej i fizjologicznej. Publikując wyniki w liczących się czasopismach międzynarodowych, doktorant dowiódł, że swobodnie porusza się na froncie badań współczesnej biologii. Wnioskuję do Rady Wydziału Biologiczno-Chemicznego Uniwersytetu w Białymstoku o dopuszczenie Pana mgr. Adama Hermaniuka do dalszych etapów przewodu doktorskiego, a także o nagrodzenie rozprawy odpowiednim wyróżnieniem. Uważam, że niniejsza rozprawa doktorska spełnia wymagania stawiane przez Ustawę z dnia 14 marca 2003 r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki oraz w Ustawie z dnia 18 marca 2011 r. o zmianie ustawy – Prawo o szkolnictwie wyższym, ustawy o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki.

Marcin Czarnołęski